त्रिभुज Ex 6.5
प्रश्न 1. कुछ त्रिभुजों की भुजाएँ नीचे दी गई हैं। निर्धारित कीजिए कि इनमें से कौन-कौन से समकोण त्रिभुज हैं। इस स्थिति में कर्ण की लम्बाई भी खिए।
(i) 7 cm, 24 cm, 25 cm
(ii) 3 cm, 8 cm, 6 cm
(iii) 50 cm, 80 cm, 100 cm
(iv) 13 cm, 12 cm, 5 cm
प्रश्न 2. PQR एक समकोण त्रिभुज है जिसका कोण Pसमकोण है तथा QR पर बिन्दु M इस प्रकार स्थित है कि PM ⊥ QR है। दर्शाइए कि PM2 = QM . MR है।
प्रश्न 3. दी गई आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि-
(i) AB2 = BC . BD
(ii) AC2 = BC . DC
(iii) AD2 = BD . CD
प्रश्न 4. ABC एक समद्विबाहु त्रिभुज है जिसका कोण C समकोण है। सिद्ध कीजिए कि AB2 = 2AC2 है।
प्रश्न 5. ABC एक समद्विबाहु त्रिभुज है, जिसमें AC = BC है। यदि AB2 = 2AC2 हो तो सिद्ध कीजिए कि ABC एक समकोण त्रिभुज है।
प्रश्न 6. एक समबाहु त्रिभुज ABC की भुजा 2a है। उसके प्रत्येक शीर्षलम्ब की लम्बाई ज्ञात कीजिए।
प्रश्न 7. सिद्ध कीजिए कि एक समचतुर्भुज की भुजाओं के वर्गों का योग विकर्णों के योग के बराबर होता है।
प्रश्न 8. दी गई आकृति में ∆ABC के अभ्यन्तर में स्थित कोई बिन्दु O है तथा OD ⊥ BC, OE ⊥ AC और OF ⊥ AB है। दर्शाइए कि-
(i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
प्रश्न 9. 10 m लम्बी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुंचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।
प्रश्न 10. 18 m ऊँचे एक ऊर्ध्वाधर खम्भे के ऊपरी सिरे से एक तार का एक सिरा जुड़ा हुआ है तथा तार का दूसरा सिरा एक खूटे से जुड़ा हुआ है। खम्भे के आधार से खुंटे को कितनी दूरी पर गाड़ा जाए कि तार तना रहे जबकि तार की लम्बाई 24 m है।
प्रश्न 11. एक हवाईजहाज एक हवाई अड्डे से उत्तर की ओर 1000 किमी प्रति घण्टा की चाल से उड़ता है। इसी समय एक अन्य हवाईजहाज उसी हवाई अड्डे से पश्चिम की ओर 1200 किमी प्रति घण्टा की चाल से उड़ता है। 112 घण्टे के बाद दोनों हवाईजहाजों के बीच की दूरी कितनी होगी?
प्रश्न 12. दो खम्भे जिनकी ऊँचाइयाँ 6 m और 11 m हैं तथा ये समतल भूमि पर खड़े हैं। यदि इनके निचले सिरों के बीच की दूरी 12 m हो तो इनके ऊपरी सिरों के बीच की दूरी ज्ञात कीजिए।
प्रश्न 13. एक ∆ABC जिसका ∠C समकोण है की भुजाओं CA और CB पर क्रमशः बिन्दु D और E पर स्थित हैं। सिद्ध कीजिए कि AE2 + BD2 = AB2 + DE2 है।
प्रश्न 14. किसी ∆ABC के शीर्ष A से भुजा BC पर डाला गया लम्ब BC को बिन्दु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है। सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।
प्रश्न 15. किसी समबाहु त्रिभुज ABC की भुजा BC पर बिन्दु D इस प्रकार स्थित है कि BD = 1/3 BC है। सिद्ध कीजिए कि 9AD2 = 7AB2 है।
प्रश्न 16. किसी समबाहु त्रिभुज में, सिद्ध कीजिए कि उसकी एक भुजा के वर्ग का तिगुना उसके एक शीर्षलम्ब के वर्ग के चार गुने के बराबर होता है।
प्रश्न 17. सही उत्तर चुनकर उसका औचित्य दीजिए : ∆ABC में, AB = 6√3 cm, AC = 12 cm और BC = 6 cm है। कोण B है-
(A) 120°
(B) 60°
(C) 90°
(D) 45°
त्रिभुज Ex 6.5
भुजाओं की शर्तें
त्रिभुज असमिका(Triangle Inequality) बताती है कि त्रिभुज की किन्हीं दो भुजाओं की लम्बाइयों का योग, तीसरी भुजा की लंबाई से अधिक या बराबर होना चाहिए। केवल एक पतित त्रिभुज में, किन्हीं दो भुजाओं की लम्बाइयों का योग, तीसरी भुजा की लंबाई के बराबर होता है, जिसमें तीनों शीर्ष संरेखीय होते हैं। त्रिभुज की दो भुजाओं की लम्बाइयों के योग का, तीसरी भुजा की लंबाई से कम होना संभव नहीं है। तीन दी गईं सकारात्मक भुजाओं वाला त्रिभुज बनेगा यदि वे भुजाएँ, त्रिभुज असमिका को संतुष्ट करती हैं।
कोणों पर शर्तें
त्रिभुज Ex 6.5
तीन दिए गए कोण एक अपतित त्रिभुज बनाते हैं यदि वे इन दोनों शर्तों का पालन करते हैं: (a) कोणों में से प्रत्येक सकारात्मक हो, और (b) कोणों का योग 180° के बराबर है। पतित त्रिभुजों के लिए कोण 0° का हो सकता है।
त्रिभुज Ex 6.5
त्रिकोणमितीय शर्तें
तीन सकारात्मक(Positive) कोण α, β, और γ (इनमें से प्रत्येक 180° से कम है), एक त्रिभुज के कोण होंगे यदि वे निम्न शर्तों में से किसी एक का पालन करें: