Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

प्रश्न 4.
यदि S और T दो ऐसे समुच्चय हैं कि S में 21, T में 32 और S ∩ T में 11 अवयव हों तो S ∪T में कितने अवयव होंगे?
हल:
यहाँ n(S) = 21, n (T) = 32, n(S ∩T) = 11
n(S∪T) = n(S) + n(T) – n(S ∩ T) = 21 + 32 – 11 = 53 – 11 = 42.

प्रश्न 5.
यदि X और दो ऐसे समुच्चय हैं कि X में 40, X ∪Y में 60, और X ∩ Y में 10 अवयव हों, तो ? में कितने अवयव होंगे?
हल:
n(X) = 40, n(X ∪Y) = 60, n(X ∩ Y) = 10, n(Y) = ?
n(X ∪ Y) = n(X) + n(Y) – n (X ∩Y)
60 = 40 + n (Y) – 10
n(Y) = 60 – 40 + 10 = 30.

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

प्रश्न 6.
70 व्यक्तियों के समूह में 37 कॉफी, 52 चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफी और चाय दोनों पसंद करते हैं?
हल:
मान लिया C, कॉफी पीने वाले लोगों के समुच्चय को और T, चाय पीने वाले लोगों के समुच्चय हों, तब
n(C ∪T) = 70, n(C) = 37, n(T) = 52
n(C ∪T) = n (C) +n(T) – n(C ∩ T)
70 = 37 + 52 – n(C ∩T)
n(C ∩ T) = 37 + 52 -70 = 89 – 70 = 19.

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

प्रश्न 7.
65 व्यक्तियों के समूह में, 40 व्यक्ति क्रिकेट और 10 व्यक्ति क्रिकेट तथा टेनिस दोनों को पंसद करते हैं, तो कितने व्यक्ति केवल टेनिस को पंसद करते हैं किंतु क्रिकेट को नहीं? कितने व्यक्ति टेनिस को पंसद करते हैं?
हल:
मान लीजिए C, क्रिकेट पंसद करने वाले लोगों का समुच्चय है और T टेनिस पंसद करने वालों का समुच्चय हो, तब
n(C ∪T) = 65, n(C) = 40, n(C ∩T) = 10
हम जानते हैं कि
n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
65 = 40 + n(T) – 10 = 30 + n(T)
n(T) = 65 – 30 = 35
केवल टेनिस पंसद करने वालो की संख्या = n(T) – n(C ∩T) = 35 – 10 = 25.
इस प्रकार टेनिस पंसद करने वालों की संख्या जो क्रिकेट पंसद नहीं करते = 25
अत: टेनिस पंसद करने वाले लोगों की संख्या = 35.

Bihar Board Class 11 Maths Chapter 1 Sets Ex 1.6 in Hindi

प्रश्न 8.
एक कमेटी में, 50 व्यक्ति फ्रेंच 20 व्यक्ति स्पेनिश और 10 व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं?
हल:
मान लीजिए फ्रांसीसी बोलने वाले लोगों के समुच्चय को F से तथा स्पैनिश बोलने वाले लोगों के समुच्चय का S से निरुपित किया हो, तब
n(F) = 50, n(S) = 20, n(F ∩S) = 10
अब, n(F ∪S) = n(F) + n (S) – n (F ∩S) = 50 + 20 – 10 = 60
कम से कम एक भाषा बोलने वाले लोगों की संख्या = 60.

youtube channel
Whatsapp Channel
Telegram channel

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top